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This paper is devoted to the development of the Dirac formalism for singular 
systems when appfied to the Landau two-fluid model in superfluid helium. 
Notably, the Hamiltonian density is weakly zero (in the sense of Dirac). We 
obtain the physical and gauge variables, and show that all the constraints are of 
first class, and hence, that the Dirac bracket coincides with the Poisson bracket. 
We leave the quantization of this system for a later work. 

1. INTRODUCTION 

In this work we study some features that the Landau two-fluid 
model (1941) presents when is seen from the point of view of the Dirac 
mechanics (Dirac, 1950, 1951, 1958, 1964, 1966; Bergmann and Goldberg, 
1955; Sudarshan and Mukunda, 1974), 

The Lagrangian formulation of the equations of two-fluid hy- 
drodynamics is given by Khalatnikov (1952). Pokrovsky and Khalatnikov 
(1976) establish those equations by using the usual Hamiltonian dynamics; 
but in their work they do not  take into account the singularity of the 
Lagrangian density, i.e,, the existence of constraints in the phase space. 

We show that the Lagrangian density proposed by Khalatnikov (1952) 
is singular, so that to find the time evolution of the physical variables we 
must apply the Dirac formalism. 

The Dirac mechanics is used by Chela-Flores et al. (to be published) 
to describe superfluid helium, but that description corresponds to the 
gauge theory given by Chela-Flores  (1975, 1976) and is essentially diffe- 
rent from the one we study here. 

In Sections 2 and 3 we review some basic concepts of the Dirac 
mechanics and the Landau two-fluid model, respectively; in Section 4 we 
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apply the Dirac formalism to the Landau-Khalatnikov model, and in 
Section 5 we state our conclusions. 

2. SUMMARY OF T H E  DIRAC MECHANICS 

We give the most important results of the Dirac mechanics of interest 
in our work. 

Let q=(ql,q2 ..... qN) and P=(Pl,P2 ..... PN) denote collectively the 
generalized coordinates and momenta of a system of particles. A 
Lagrangian is singular if and only if 

0 det =-7=-7.. = 0  (2.1) 

where n, n' take all values from 1 to N. 
1 0 The primary constraints I fa,(q,p)~ (a I = 1 . . . . .  A) are those that arise 

from the definition 

~L 
p. = q.2-- 7 (2.2) 

and the secondary constraints f~(q,p)~O (k' >>. 2) are these that arise from 
the self-consistency equations 

( k =  1 . . . . .  M)  (2.3) 

where 

A 

q,~--~p + • Ual~p. 
a l = l  

(2.4) 

o u  " 3f), (2.5) 
Pn~-~ Oqn s Ua' ~qn 

a l = l  

The Ua, are noncanonical variables and can be determined from the 
self-consistency equations. 

A variable g(q,p) is first class if 

,fk ~ (2.6) ( g ak) ~ 0  Vak 

1,,~,, means "weak equality." This terminology was introduced by Dirac to remind us that 
we must not use these constraints before working out a Poisson bracket. 
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i.e., if it has Poisson bracket weakly zero with all the constraints (primary 
and secondary). The variable g(q,p) is second class in the contrary case. 

Theorem. A quantity g(q,p) is a physical variable, Dirac shows, if 
and only if 

{ g,f~ } ~ 0 ,  a =  1, . . . ,R  (2.7) 

with all the primary and first class constraints. In the contrary 
case, g(q,p) is nonphysical. 

Finally, the Dirac bracket is defined by 

( g,h)* = (g,h) - ~ (  g , :  } c 0 (f:, h ) (2.8) 

the sum being extended over the second class constraints of one 
irreducible descomposition of them, and C is the inverse matrix of 
the Poisson brackets ( f , f j ) .  

3. LANDAU TWO-FLUID MODEL 

According to Landau theory, helium is composed of two liquids which 
can move independently: one liquid moves with velocity v,, which is 
responsible for superfluid properties, and another moves with velocity v,, 
which is responsible for the viscosity. 

The Lagrangian density proposed by Khalatnikov is 

1 2 " - -  ~(p,S,j) = - ~ p v ~ + J ' v ~  ~(p,S,v,-v~) 

+ ~(~+ v . j )+  B[ s +  v . ( s , , ) ]  + , [ / ~ - v . ( r v , ) ]  (3.1) 

where 

j = Onv, + p~v, (3.2) 

and 0n and Ps are the densities of the two liquids; S is the density of 
entropy; ~ is the energy density, and j is the momentum density of the 
liquid. 

We observe that in (3.1) appears the equations of motion as restric- 
tions, with a, 13, and ~, as Lagrangian multipliers. However, it is unnecesary 
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to obtain the equations of motion via Lagrange because they do not affect 
the variational principle2; hence, in order to simplify the calculus, we use 

~ ( p , S , p ) =  ~ 2 _ ~pv; +p .% ~(p,S,p) (3.3) 

w i t h  p=pn(Vn - - V s ) =  S7fl+ FVp. 

An identical Lagrangian density is obtained by Lhuillier et al. (1975). 
We emphasize, however, that the procedure they employ is not valid in 
general. In effect, Kfilnay and Ruggeri (1973) show that under certain 
conditions the quantization procedure is altered (and therefore the physical 
properties) when one adds a total time derivative to the Lagrangian of a 
constrained classical model. 

Finally, Pokrovsky and Khalatnikov (1976) obtained the energy H of 
the fluid in the stationary coordinate frame: 

H = f [ 1  2 +,(p,S,p)]dv ~av; +p-vs 

and the three pairs of conjugate variables are 

(a,p) (fl, S) (v,F)  

(3.4) 

(3.5) 

4. APPLICATION OF THE DIRAC FORMALISM 

Let the Lagrangian density be 

| 2 . - -  ~(p,S,p)=ipvj + p  v~ e(p,S,p) (4.1) 

We note that E is singular, because in (4.1) the velocities do not 
appear explicitly. 

2We recall that in the regular and the singular case, the variation of the action integral must 
be zero: 

" 

As we can observe, in order to obtain the motion equations, we only need the independence 
between the variations of qs. 
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Constraints in the Phase Space. From the definition of the generalized 
momenta, we obtain that 

ag 
o = --~--d = O 

S =  OE. =0  (4.2) 
oB 

F =  O ~ = 0  
Ok 

thus, the system presents three primary constraints 

y~,~p~O, f g ~ S ~ O ,  S l ~ F ~ O  (4.3) 

Then, the velocities &, /7, and 1; cannot be expressed in terms of the 
generalized coordinates and momenta; this is a typical feature of singular 
systems. The pre-Hamiltonian h has the form 

h(ct,fl, p,&,fl, i,,p,S,F, V a, 7 fl, V1,) =p& + Sfl + Fi, 

1 2 - -  V - ~ p v ; - l , "  ,+e(p ,S,p)  (4.4) 

Thus, the usual method cannot be applied. However, using the con- 
straints, we obtain the Hamiltonian density 

~C(a,fl,~,,p,S,F, Va, Vfl, Vp)~O (4.5) 

On the other hand, the equations of motion are 

a ~ u  l, h~O 

D ~ u2, s ~ o  

i ,~u 3, P~O 

(4.6) 

where we have used the total Hamiltonian 

A 

oc,--oc + E .o,s', 
al 

Therefore~ due to equations (4.6), there are no secondary constraints. 
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Physical Variables. By definition, f~, f2 I, and f~ are primary first-class 
constraints: 

{ p , S ) ~ 0 ,  { o , F } ~ 0 ,  { S , F ) , ~ 0  (4.7) 

and as physical variables, 0, S, and F are first class. 
According to the theorem enunciated in Section 2, for any physical 

variable g, we have that 

( g,p},~0, ( g ,S  ),~0, (g ,F)~O (4.8) 

Thus, we obtain the following result: 

Theorem. If a variable g in the two-fluid model of Landau is 
physical, then 

O_gg ~ 0 ,  Og Og Oa O--fl ~0, -~u ~0 (4.9) 

In particular, the Hamiltonian density cannot depend on these vari- 
ables. Also, V a, V r ,  and V v are physical variables. 

From the above result, we can deduce that the time evolution of the 
velocity v~ of the superfluid is determined when one knows its value at any 
time. Equally, the quantity p =  SVa+ FVv is a physical variable; in this 
context, our results are compatible with a theorem of Pokrovsky and 
Khalatnikov (1976): Assume that at some initial instant t = t o the quantity 
curl p /S  is equal to zero in all space. Then it remains equal to zero in all 
the succeeding instants of time. 

This theorem is valid if p is a physical variable, because in the 
contrary case it would be affected by arbitrary functions of time. 

Finally, we observe that there are no second-class constraints, and 
hence that the Dirac bracket of two quantities g and h coincides with the 
Poisson bracket, i.e., 

(g,h)*=(g,h) 

This implies directly (Dirac, 1958) that we cannot reduce the number 
of variables of the phase space3; thus, all the variables introduced in the 
Landau-Khalatnikov theory are relevant in the description of the proper- 
ties of 4He II. 

3A contrary case occurs in the gauge theory (Chela-Flores et al., to be published). 
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5. C O N C L U S I O N S  

After a brief summary of some basic concepts, we show that the 
Hamiltonian density of the system cannot be written as a function of only 
the canonical variables. We avoid that difficulty by replacing the con- 
straints in the pre-Hamiltonian h. We obtain, remarkably, that the Hamil- 
tonian density ~2 is weakly zero. 

On the other hand, we determine that a, fl, and v are nonphysical 
variables. Furthermore, Va, Vfl, and Vv are physical variables; in this 
context we show the agreement between our results and a theorem shown 
by Pokrovsky and Khalatnikov (1976). 

Finally, the Dirac bracket coincides with the Poisson bracket, and 
hence all canonical variables are necessary to describe the superfluid 
properties (in this model) of 4 H e  II. 

TABLE I. Comparison between Gauge Theory of Superfluidity and Landau Two-Fluid Model 

Superfluidity 
Landau two-fluid model devel- 
oped via Dirac by the author of 
this work 

Gauge theory of Chela-Flores developed 
via Dirac by Chela-Flores et al. 

Lagrangian 
density 

Primary 
constraints 

Secondary 
constraints 

Hamiltonian 
density 

Physical 
variables 

Gauge 
variables 

Dirae 
brackets 

First-class 
constraints 

Second-class 
constraints 

e = � 8 9  + p - v , -  r S,p) 

fl ~p~O,  f2 ~ S,~O, f3,~F~,O 

n o  

OC~O 

p,S,F 

{F,G}*={F,6} 

all 

no  

, �9  <V• 
! 

2m (V + imA)~b* �9 (V - imA)t# 

i . , i 

fs = AleA 2 + kV • • A)-- ~m/(~* V~p- ~pV ~V*) 

~c = 1 v ' ~ * v ' P - - V l ~ l ' +  2 i . i , 
2m 

- 2A2[tp[2-- - ~ ( V  • A) 2 

~, ~p*, A, II, II*,  I I  ~ (II i ,  I12, II3) 

r i o  

8 
(F,G}*=(F,G}- ~ f d3x{F,L}C~,(fd, G} 

a,a" 

n o  

all 
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I cons ide r  it necessa ry  to inc lude ,  for  c o m p l e t e n e s s  a c o m p a r a t i v e  
scheme  (see T a b l e  I) b e t w e e n  the  gauge  theory  of supe r f lu id i ty  (which  we 

s tud ied  o n  a n o t h e r  occas ion )  a n d  the  L a n d a u  two- f lu id  m o d e l  (which  we 
are  s t u d y i n g  at  p resen t )  f r o m  the  p o i n t  of v iew of the  D i r a c  m e c h a n i c s .  
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